If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3q^2+7q-2=0
a = -3; b = 7; c = -2;
Δ = b2-4ac
Δ = 72-4·(-3)·(-2)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*-3}=\frac{-12}{-6} =+2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*-3}=\frac{-2}{-6} =1/3 $
| s6+29=101 | | h*9/11=5 | | 8=18-y | | N=145y+2788 | | -5(2x-19)=2(x-17)-11 | | t÷5-4=9 | | 1/2=b/10 | | 7/3=a/5 | | 3(3x+-5)=21 | | P=(19/2)+(4/25)d | | 16x+2+9=14x-1 | | a÷5+5=12 | | -3(x-1)=-5x+x+7 | | 1=8/a | | a+11=15 | | 6=5+(2x+6) | | 0.5(x-22)=16+5x | | -8(y-8)=-6 | | 26=7(g-9)+12 | | 5x2+3x-4=0 | | x3=12-4x | | 7r-4r+2=9r+2-r | | 25+3x=2(-x+6)-27 | | 3^x+4^x=7^x | | 8(5-w)+10=-10(w-4)-8 | | 54.67x9=492.03 | | 12x^2-11x-9=6 | | 3*1=72/j-5 | | X^3=12-4x | | 20/m=5 | | 15=11m | | 7-m=3 |